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Introduction Formalism & Results Conclusions

Heavy ion collision modeling: state of the art

Heavy-ion collisions are understood in terms of:

• Initial-state fluctuations • Hydrodynamical evolution
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Role of fluctuations?
• At experiments, even small systems such as those produced in

proton-nucleus collisions seem to produce a fluid.

• Is the ridge seen in proton-proton collisions also due to the
formation of a fluid?

• The question arises:
What is the role of thermal fluctuations in such small systems?

Figure: System whose variations are large when zooming in on a small part.

Two different sources of fluctuations: initial and thermal ones.
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Different fluctuations

Initial-state fluctuations

• Quantum mechanical origin.

3 2 1 0 1 2 3
x

3

2

1

0

1

2

3

y

Thermal fluctuations

• Present in all systems with T > 0.
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Fluctuations in the hydro evolution of a heavy-ion collision

• Hydrodynamics: ∂µT
µν = 0 & Equation of state

Tµν = Tµν
0 + δTµν︸ ︷︷ ︸

fluct.

, δTµν =


δT
δuµ

Sµν ↔ Πµν

• Tµν is the energy-momentum tensor
• uµ is the flow four-velocity
• Sµν is the noise tensor
• Πµν is the stress tensor

Solving linearized noisy hydro:{
∂µT

µν
0 = 0 → analytically (Bjorken1, Gubser)

∂µδT
µν = 0

1Kapusta, Müller, Stephanov 2012
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Fluctuation-dissipation theorem

〈
SµνSαβ

〉
∼ η

s

1

∆V∆t
Λµναβ

• Notation:
• η/s viscosity over entropy ratio
• ∆V∆t space-time volume
• Λµναβ unknown tensor

• Thermal fluctuations are related to dissipations.

• Thermal fluctuations are more significant in small systems.

• The structure of Λµναβ may be involved.
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Characteristics of Gubser 2 hydro

Exact solution to the equations of hydrodynamics.

• Conformal equation of state ε = 3p

• Boost invariant longitudinal expansion (Bjorken)

• Rotational sym. wrt. the beam axis (p-A and ultra-central A-A)

• Finite transverse size & transverse expansion for τ > 0

2Gubser and Yarom 2010
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Gubser hydro
Non-trivial analytic solution of hydro with transverse expansion.

• Conformal symmetry
⇒ hydro eqs are invariant under general coordinate transformations.

• Uniform fluid at rest in a certain geometry (dS3 × R)
=

Non-uniform expanding fluid in usual laboratory space-time.

• The two space-times are related by coordinate transformations:

(τ , ξ, r , φ) 7→ (ρ, ξ, θ, φ)

• τ is the proper time
• r is the radius in the transverse plane
• ρ is the de Sitter time
• ξ is the spatial rapidity
• θ, φ are the coordinates on the sphere

• Denote all quantities in dS3 × R space-time by ‘hats’.
• Rotational SO(3) symmetry in new coordinate system (θ, φ).
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Evolution of ε and v⊥ vs r for Pb-Pb (η/s = 0)
ε =energy density, v⊥ = transverse velocity of fluid
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Gubser hydro and thermal noise

• Correlation of thermal noise in Gubser hydro, (X → (ρ, θ, φ, ξ))〈
Ŝµν(X1)Ŝαβ(X2)

〉
∝ η

s
P̂µνP̂αβδ(X1 − X2)

• Tensor structure of Ŝµν is simplified, thanks to ûµ = (1, 0, 0, 0).

Ŝµν(X ) = ŵ(ρ)f̂ (X )P̂µν , P̂µν = diag [0, 1, 1,−2] ,

and we have the correlation of the scalar function〈
f̂ (X1)f̂ (X2)

〉
=

2ν

ŵ cosh2 ρ1 sin θ1

δ(X1 − X2) , ν =
4

3

η̂

ŝ

• Magnitude of thermal noise is constrained by ŵ ∼ multiplicity

Multiplicity more crucial than system size.

• Same conclusion for Bjorken case.



Introduction Formalism & Results Conclusions

Noisy Gubser flow

• We solve the Gubser flow mode by mode.

• Decompose thermal fluctuations into scalar and vector modes using
spherical symmetry in transformed coordinates (ρ, θ, φ, ξ):

δT̂ (ρ, θ, φ, ξ) =T̂ (ρ)
∑
l,m

∫
dkξ
2π

δlm(ρ, kξ)Ylm(θ, φ)e ikξξ

δûi (ρ, θ, φ, ξ) =
∑
l,m

∫
dkξ
2π

[
v s
lm(ρ, kξ)∂iYlm(θ, φ) + v v

lm(ρ, kξ)Φi(lm)(θ, φ)
]
e ikξξ

δûξ(ρ, θ, φ, ξ) =
∑
l,m

∫
dkξ
2π

vξlm(ρ, kξ)Ylm(θ, φ)e ikξξ

f̂ (ρ, θ, φ, ξ) =
∑
l,m

∫
dkξ
2π

hlm(ρ, kξ)Ylm(θ, φ)e ikξξ
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Gubser hydro and thermal noise

Each mode evolves according to a Langevin–type equation (from
∂µδT

µν = 0):

Ṽ ′l (ρ) = −Γ̂(ρ, l , kξ)Ṽl(ρ)︸ ︷︷ ︸
drag

+ K̃(ρ, kξ)︸ ︷︷ ︸
noise

Ṽl(ρ) =


δl(ρ)
vls(ρ)
vlξ(ρ)
vlv (ρ)

 , Γ̃ is a 4× 4 matrix, K̃ =


−2

3 tanh ρh(ρ)
2T̂
3T̂ ′ tanh ρh(ρ)

− i4kξT̂

T̂+H0 tanh ρ
h(ρ)

0


• Vector modes are decoupled, and NOT affected by thermal noise.
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Solving noisy Gubser flow

• Ultra-central Pb-Pb, p-Pb and p-p.

• The height (T̂0) and width (q−1) of the Gubser solution are
determined using the multiplicity and transverse size.

PbPb pPb pp

T̂0 7.3 3.1 2.0
q−1(fm) 4.3 1.1 1.1

• Approximates system evolution during first several fm’s.

• kξ = 0 mode:

- Long-range rapidity correlations.

- Further simplification with vξ modes decoupled and indep. of noise
⇒ 2 coupled eqs.
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Evolution of temperature profile

T (τ, ~x⊥) without and with thermal noise, one random event

• x , y are coordinates in the plane transverse to the collision axis.

Pb-Pb
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Evolution of temperature profile

T (τ, ~x⊥) without and with thermal noise, one random event

• x , y are coordinates in the plane transverse to the collision axis.

p-p
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Hydro & experimental data
• Experimental signature of hydro:

2-particle correlations averaged over many events.

• Hydro explains the long-range wave structure but not the
short-range peak.

• What is the role of hydro fluctuations for the long-range & the
short-range correlations?
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Making contact with data

Two-particle correlations are not directly calculable in hydro:

• No hadronization or freeze-out.

• Hydro behavior seen through the final particle spectrum.

What we CAN do, however, is to study an object similar to that of
two-particle correlations: The two-point correlator of radial flow.

• Radial flow because we are interested in the transverse expansion.

Experiments Theory

〈N(ξ1, φ)N(ξ2, φ+ ∆φ)〉 ∼ 〈ur (r , φ)ur (r , φ+ ∆φ)〉
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Solving the two-point function of noise
Formal solution:〈

Ṽl Ṽl
〉

= Initial fluc. + Thermal fluc.

Initialization of numerics for short-range (1) & long-range (2)
initial fluctuations:

1) δT̂ (θ, φ, ρ0, ξ) = const.× δ(θ − θ0)δ(φ− φ0) =
∑
l ,m

all modes

or

2) δT̂ (θ, φ, ρ0, ξ) = const.×
[

(−1)n
1√
2
Yn,n(θ, φ) +

1√
2
Yn,−n(θ, φ)

]

ε2(Pb-Pb)∼ 0.05, ε2(p-Pb)∼ 0.15 & ε2(p-p)∼ 0.2 ⇒ gives const.
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Radial flow correlation

We choose an observable to characterize the correlation:

Curur (τ, r ,∆ϕ) = 〈ur (τ, r , ϕ)ur (τ, r , ϕ+ ∆ϕ)〉 − background

= CT
urur + C I

urur

• Equal time (τ) and equal radius (r).

• To see the effect of hydro noise we rescale as follows:

Rescaled Curur ≡
CT
urur

amplitude of C I
urur

• Snapshot at τ = 2.5 fm.
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Effect of noise on short-range correlations

Curur (r ,∆ϕ)

(a) Pb-Pb
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Effect of noise on short-range correlations

Curur (r ,∆ϕ)

(a) Pb-Pb
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Details of the near-side peak in CT
urur

vs ∆φ
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Effect of noise on long-range correlations
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Conclusions

• The absolute amplitude of hydro noise in ultra-central heavy-ion
collisions is essentially determined by the multiplicity.

• Long-range correlations → evolution of eccentricity:
• Additional contribution to eccentricity from noise.

• Stronger in p-p and higher-order harmonics.

• Effects are NOT sizeable.

• Short-range correlations:
Noise contributes to the formation of a near-side peak on top of the
structure coming from initial state fluctuations:

• The height and width of the peak grow from Pb-Pb to p-p.

Outlook:

• Longitudinal fluctuations along longitudinal direction, kξ 6= 0?

• Second order viscous hydrodynamics?
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Backup slides



Introduction Formalism & Results Conclusions

Coordinate transformation

• Weyl rescaling R1,3 → dS3 × R : gµν → g̃µν = gµν/τ
2

Now the metric reads

ds̃2 =
1

τ2

(
−dτ2 + d~x2

⊥
)

+ dξ2 .

• Reparametrize dS3 by the mapping (τ, r)→ (ρ, θ) :

sinh ρ = −1− q2τ2 + q2r2

2qτ

tan θ =
2qτ

1 + q2τ2 − q2r2

so that the symmetry SO(1, 1)×Z2 × SO(3) is now manifest :

dŝ2 = dρ2 + dξ2 + cosh2 ρ
(
dθ2 + sin2 θdφ

)
.
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Temperatures and multiplicities

T̂0 =
1

f
1/12
∗

(
3

16π

dS

dξ

)1/3

where f∗ = ε/T 4 = 11 is extracted from lattice calculations and

dS

dξ
= 7.5

dNch

dy
.

• Pb-Pb:
√
sNN = 2.76 TeV corresponding to dNch/dy ∼ 1600

• p-Pb:
√
sNN = 5.02 TeV corresponding to dNch/dy ∼ 150

• p-p:
√
s = 13 TeV corresponding to dNch/dy ∼ 100
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